nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.56 23-32
Genome-Wide Association Study of Panicle Traits in Japonica Rice from Northeast China
Email: wangxianju@163.com;mazuo1984@163.com;
DOI:
摘要:

[目的]水稻(Oryza sativa L.)穗部性状是决定产量的关键农艺性状,解析其遗传机制对应对全球粮食安全挑战至关重要。本研究旨在挖掘调控粳稻穗部形态的关键遗传位点及功能基因,为高产育种提供理论支撑。[方法]利用来自中国东北地区的410份粳稻材料作为供试材料,系统测定穗长、一次/二次枝梗数等穗部形态和结构指标,通过全基因组关联分析(GWAS)定位显著关联位点,结合单倍型分析和PARMS标记基因分型验证候选基因功能。[结果]共鉴定到7个显著QTL位点(qPW2、qGNP3、qPW6/qTGW6、qPL8、qPBN8/qTGW8、qPL9和qTGW9),筛选到GW6a、DEP1等10个候选基因。单倍型分析表明,GW6a不同单倍型在穗重与千粒重表型上存在显著分化,DEP1单倍型间穗长差异达极显著水平。基于分子标记的基因分型验证GW6a和DEP1的优势等位基因型。[结论]发现GW6a和DEP1的等位变异分别与穗重及穗长存在显著遗传关联,基于PARMS标记构建的基因分型体系可高效筛选穗型优势等位基因。研究成果为东北粳稻穗型分子设计育种提供可验证的遗传靶点,通过多基因聚合策略可优化穗部结构,推动高产智能育种技术发展。

Abstract:

[Objective]Rice(Oryza sativa L.) panicle traits are critical agronomic determinants of yield, and elucidating their genetic mechanisms is essential to address global food security challenges. This study aims to identify key genetic loci and functional genes regulating panicle morphology in japonica rice, providing theoretical support for high-yield breeding. [Methods]Using 410 japonica rice accessions from Northeast China, we systematically measured panicle morphological and structural traits, including panicle length,primary/secondary branch numbers, and conducted genome-wide association study(GWAS) to locate significant loci. Candidate gene functions were validated through haplotype analysis and PARMS marker-based genotyping. [Results]A total of 7 significant QTL(qPW2, qGNP3, qPW6/qTGW6, qPL8, qPBN8/qTGW8, qPL9 and qTGW9) sites were identified, and 10 candidate genes including GW6a and DEP1 were screened. Haplotype analysis revealed significant divergence in panicle weight and grain weight traits among GW6a haplotypes, while DEP1 haplotypes exhibited highly significant differences in panicle length. Molecular marker-based genotyping confirmed the superior allelic variants of GW6a and DEP1. [Conclusion]This study demonstrates significant genetic associations between GW6a/DEP1 allelic variations and panicle weight/length traits. The PARMS marker-based genotyping system enables efficient screening of favorable panicle-related alleles. These findings provide validated genetic targets for molecular design breeding of panicle architecture in Northeast japonica rice. Multi-gene polymerization strategies can optimize panicle structure and advance high-yield smart breeding technologies.

References

[1]高虹,姜楠,吕国依,等.中国东北粳稻与日本粳稻产量差异及原因分析[J].中国水稻科学,2018,32(4):357-364.GAO H,JIANG N,LüG Y,et al.Dissection of grain yield differences between japonica rice in Northeast China and in Japan[J].Chinese Journal of Rice Science,2018,32(4):357-364.

[2]张珣,黎馨月,高雨竹.沈阳典型粳稻种植区稻田土壤ARGs和MGEs污染分布特征分析[J].沈阳农业大学学报,2024,55(3):306-315.ZHANG X,LI X Y,GAO Y Z.Analysis of the current status of antibiotic resistance gene contamination in the soil of Japonica rice paddy field in Shenyang.[J].Journal of Shenyang Agricultural University,2024,55(3):306-315.

[3]季国军,纪洪亭,程琨,等.江苏稻田轮作模式碳、氮足迹分析[J].南京农业大学学报,2023,46(3):510-521.JI G J,JI H T,CHENG K,et al.Analysis on carbon footprint and nitrogen footprint of paddy field rotation pattern in Jiangsu Province[J].Journal of Nanjing Agricultural University,2023,46(3):510-521.

[4] SECK P A,DIAGNE A,MOHANTY S,et al.Crops that feed the world 7:Rice[J].Food Security,2012,4(1):7-24.

[5] CROWELL S,KORNILIEV P,FALC?O A,et al.Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters[J].Nature Communications,2016,7:10527.

[6]徐正进,陈温福,韩勇,等.辽宁水稻穗型分类及其与产量和品质的关系[J].作物学报,2007,33(9):1411-1418.XU Z J,CHEN W F,HAN Y,et al.Classification of panicle type and its relationship with grain yield and quality of rice in Liaoning Province[J].Acta Agronomica Sinica,2007,33(9):1411-1418.

[7] LI S B,QIAN Q,FU Z M,et al.Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J].The Plant Journal,2009,58(4):592-605.

[8] LI F,LIU W B,TANG J Y,et al.Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation[J].Cell Research,2010,20(7):838-849.

[9] QIAO Y L,PIAO R H,SHI J X,et al.Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3,which confers high grain yield in rice(Oryza sativa L.)[J].Theoretical and applied genetics,2011,122(7):1439-1449.

[10] JIAO Y Q,WANG Y H,XUE D W,et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature Genetics,2010,42(6):541-544.

[11] MIURA K,IKEDA M,MATSUBARA A,et al.OsSPL14 promotes panicle branching and higher grain productivity in rice[J].Nature Genetics,2010,42(6):545-549.

[12] YOSHIDA A,OHMORI Y,KITANO H,et al.Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional corepressor, is involved in the regulation of meristem fate in rice[J].The Plant Journal,2012,70(2):327-339.

[13] TERAO T,NAGATA K,MORINO K,et al.A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice[J].Theoretical and applied genetics,2010,120(5):875-893.

[14] LI X Y,QIAN Q,FU Z M,et al.Control of tillering in rice[J].Nature,2003,422(6932):618-621.

[15] KOMATSU M,MAEKAWA M,SHIMAMOTO K,et al.The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling Rachis-branch and spikelet development[J].Developmental Biology,2001,231(2):364-373.

[16] YUAN H,QIN P,HU L,et al.OsSPL18 controls grain weight and grain number in rice[J].Journal of Genetics and Genomics,2019,46(1):41-51.

[17] BAI X F,ZHAO H,HUANG Y,et al.Genome-wide association analysis reveals different genetic control in panicle architecture between and rice[J].The Plant Genome,2016,9(2):1-10.

[18] TA K N,KHONG N G,HA T L,et al.A genome-wide association study using a Vietnamese landrace panel of rice(Oryza sativa)reveals new QTLs controlling panicle morphological traits[J].BMC Plant Biology,2018,18(1):282.

[19] HUANG X H,WEI X H,SANG T,et al.Genome-wide association studies of 14 agronomic traits in rice landraces[J].Nature Genetics,2010,42(11):961-967.

[20] LI D T,ZHANG F T,PINSON S R M,et al.Assessment of rice sheath blight resistance including associations with plant architecture, as revealed by genome-wide association studies[J].Rice,2022,15(1):31.

[21] PENG S S,LIU Y C,XU Y C,et al.Genome-wide association study identifies a plant-height—associated gene OsPG3 in a population of commercial rice varieties[J].International Journal of Molecular Sciences,2023,24(14):11454.

[22] SACHDEVA S,SINGH R,MAURYA A,et al.New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study[J].BMC Plant Biology,2024,24(1):124.

[23] CHEN H W,ZHANG X,TIAN S J,et al.Genome-wide association study reveals the advantaged genes regulating japonica rice grain shape traits in northern China[J].PeerJ,2024,12:e18746.

[24] 3K RGP.The 3,000 rice genomes project[J].GigaScience,2014,3:7.

[25] ZHANG F,ZENG D,ZHANG C S,et al.Genome-wide association analysis of the genetic basis for sheath blight resistance in rice[J].Rice,2019,12(1):93.

[26] JIANG H Z,LIN H Y,ZHANG B,et al.Identification of genetic loci for leaf hair development in rice through genome-wide association study[J].Plant Growth Regulation,2020,90(1):101-108.

[27]滕卫丽,史飞飞,林峰,等.大豆种质耐碱性状全基因组关联分析[J].东北农业大学学报,2023,54(4):1-13.TENG W L,SHI F F,LIN F,et al.Genome-wide association analysis of alkali tolerance traits in soybean germplasm[J].Journal of Northeast Agricultural University,2023,54(4):1-13.

[28] WU Y,WANG Y,MI X F,et al.The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems[J].PLoS Genetics,2016,12(10):e1006386.

[29] SONG X J,KUROHA T,AYANO M,et al.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(1):76-81.

[30] HUANG X Z,QIAN Q,LIU Z B,et al.Natural variation at the DEP1 locus enhances grain yield in rice[J].Nature Genetics,2009,41(4):494-497.

[31] SUN S Y,WANG L,MAO H L,et al.A G-protein pathway determines grain size in rice[J].Nature Communications,2018,9(1):851.

[32] XU Q,XU N,XU H,et al.Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L. ssp. Japonica in early hybrid generations[J].Molecular Breeding,2014,34(4):1933-1942.

[33] Qu A L,Xu Y,Yu X X,et al.Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1(OsGPT1)in rice[J].Journal of Genetics and Genomics,2021,48(8):695-705.

[34] ZHANG W D,LI H J,XUE F Y,et al.Rice Glucose 6-Phosphate/Phosphate Translocator 1 is required for tapetum function and pollen development[J].The Crop Journal,2021,9(6):1278-1290.

[35] JIN J,HUA L,ZHU Z F,et al.GAD1 Encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication[J].The Plant Cell,2016,28(10):2453-2463.

[36]李转,梁铖玮,于晓玉,等.基于高密度遗传图谱发掘杂草稻早抽穗QTL[J].沈阳农业大学学报,2025,56(1):1-8.LI Z,LIANG C W,YU X Y,et al.Exploring QTL for early heading of weedy rice based on high-density genetic map[J].Journal of Shenyang Agricultural University,2025,56(1):1-8.

[37]梁超,卢子庆,李佳沅,等.东北地区旱直播粳稻种质资源品质性状分析及综合评价[J].沈阳农业大学学报,2024,55(6):641-650.LIANG C,LU Z Q,LI J Y,et al.Analysis and comprehensive evaluation of quality traits of dry direct-seeded japonica rice germplasm resources in northeast China[J].Journal of Shenyang Agricultural University,2024,55(6):641-650.

Basic Information:

DOI:

China Classification Code:S511.22

Citation Information:

[1]陈宏伟,商文奇,吕桂兰等.东北粳稻穗部性状全基因组关联分析[J].沈阳农业大学学报,2025,56(03):23-32.

Fund Information:

国家重点研发计划项目(2024YFD1201004-04); 辽宁省“种质创新藏粮于技”重大专项项目(2023JH1/10200009-01-3); 辽宁省农业科学院院长基金博士启动项目(2025BS1715)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search